
Contributor CI Documentation
Release 0.0.14

Vanessa Sochat

Mar 04, 2022

GETTING STARTED

1 Support 3

2 Resources 5
2.1 Getting Started . 5
2.2 Contributor CI . 17
2.3 Internal API . 17

Python Module Index 21

Index 23

i

ii

Contributor CI Documentation, Release 0.0.14

Contributor CI provides tools for assessing collaboration. You can use the associated GitHub actions to collect metrics
on a regular basis, or the visualization tools to look at them. You might want to use Contributor CI if you are interested
in collecting data to assess collaboration over time.

GETTING STARTED 1

https://github.com/vsoch/contributor-ci/stargazers

Contributor CI Documentation, Release 0.0.14

2 GETTING STARTED

CHAPTER

ONE

SUPPORT

• For bugs and feature requests, please use the issue tracker.

• For contributions, visit Contributor CI on Github.

3

https://github.com/vsoch/contributor-ci/issues
https://github.com/vsoch/contributor-ci

Contributor CI Documentation, Release 0.0.14

4 Chapter 1. Support

CHAPTER

TWO

RESOURCES

GitHub Repository The code for Contributor CI on GitHub.

2.1 Getting Started

Contributor CI is a set of tools for assessing and visualizing contributions. If you have any questions or issues, please
let us know

2.1.1 Installation

Contributor CI can be installed from pypi, or from source. For either, it’s recommended that you create a virtual
environment, if you have not already done so.

Install from Pypi

To install from pypi:

$ pip install contributor-ci

Install from GitHub

If you want to install directly from GitHub (perhaps a development release or a tag) you can clone the repository:

$ git clone git@github.com:vsoch/contributor-ci
you can also do git clone https://github.com/vsoch/contributor-ci
$ cd contributor-ci
$ python setup.py install
pip install . or pip install -e . for development

Installation of adds an executable, cci to your path.

`bash $ which cci /opt/conda/bin/cci `

See the Getting Started pages for next steps.

5

https://github.com/vsoch/contributor-ci
https://github.com/vsoch/contributor-ci/issues

Contributor CI Documentation, Release 0.0.14

2.1.2 User Guide

Contributor CI was created with the intention to help measure collaboration in one or more repositories or an organi-
zation over time. If you haven’t read Installation you should do that first.

Quick Start

install contributor ci
$ pip install contributor-ci

Export a GitHub Personal Access Token
$ export GITHUB_TOKEN=xxxxxxxxxxxxxx

Generate a contributor-ci.yaml (recommended in an empty directory)
$ mkdir -p cci-vsoch
$ cci init vsoch

See metric extractors available
$ cci list

Run an extraction
$ cci extract repos

Generate a contributor friendliness assessment template
$ cci cfa https://github.com/vsoch/salad

Configuration

Since the majority of the command line interactions should be automated, we use a main configuration file called
contributor-ci.yaml, that is looked for in the present working directory where you call the client. A simple
example is shown here:

The output directory to create a structure of results
defaults to $PWD/.cci if not set
outdir: null

memberOrgs will be used to label associated members as "internal"
member_orgs:

- llnl

all repos in these orgs are considered in your institution
orgs:
- cdat
- llnl
- mfem

Additional repos to add to the set (possibly not under an org above)
repos:
- alpine-dav/ascent
- atomconsortium/ampl
- ceed/benchmarks

do not include these repos in the assessment
exclude_repos:
- mfem/github-actions

6 Chapter 2. Resources

Contributor CI Documentation, Release 0.0.14

This file should have the following fields:

Table 1: Title
Name Description De-

fault
Re-
quired

mem-
ber_orgs

A list of GitHub organizations that are core to your institution. If you are concerned
about contibutions, everyone that is a member here is labeled as an internal contributor.

unset yes

orgs A list of repos your organization members contribute to, but aren’t necessarily owned
by your institution.

unset yes

repos A list of loose repos to add to the ones that are discovered under the orgs already pro-
vided.

unset false

ex-
clude_repos

One or more repos to exclude given that they are found anywhere. unset false

outdir An output directory (must exist) to save results. $PWD/.ccitrue
editor An editor to use for cci config edit vim false

You can make this file manually if you like (e.g., copy paste and edit the above) or you can use cci init <name>
to initialize one, either for an organization or your username. To generate it for your username, you can run init as
follows:

$ export GITHUB_TOKEN=xxxxxxxxx
$ cci init user:vsoch

And for an organization of interest:

$ export GITHUB_TOKEN=xxxxxxxxx
$ cci init org:spack

The place where you run this init depends on your use case. If you intent to create a CCI interface, you might want
to run this init in an empty directory. If you just want to run cci extract commands to generate data, it can be in an
existing repository.

$ mkdir -p cci-vsoch
$ cd cci-vsoch
$ cci init user:vsoch

After having your file, if you want to create an interface that visualizes data and contributor friendliness assessments
(CFAs), you should see User Interface (UI). For basic extraction or generation of CFAs, you should see Contributor
Friendliness Assessment.

Commands

Once you have your configuration file, and exported a GitHub personal access token:

Export a GitHub Personal Access Token
$ export GITHUB_TOKEN=xxxxxxxxxxxxxx

. . . the following commands are available! For any command, you can specify a custom configuration file or output
directory:

$ cci --config-file <config-file> --out-dir <out-dir> <command> <args>

2.1. Getting Started 7

https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/creating-a-personal-access-token

Contributor CI Documentation, Release 0.0.14

User Interface (UI)

The most straight forward thing you might want is a user interface to explore your repositories. Once you have
generated your contributor-ci.yaml in an otherwise empty directory (and it’s recommended to edit it after generation
to make sure it looks okay) creating an interface is as simple as running:

$ cci ui generate

By default, generation happens in the directory where you run the command. To change this:

$ cci ui generate ./docs

Whether you are generating or updating, if you want to also generate new files for the contributor friendliness assess-
ment, you can add –cfa:

$ cci ui --cfa generate

Once you have an interface, it has a GitHub action that will run an update command on a nightly basis to generate new
data for it. But you can also run this locally or manually. It takes the same argument for a directory or defaults to the
present working directory.

$ cci ui update

And akin to generate, you can specify to generate new CFA files (default will not):

$ cci ui --cfa update

For update and the GitHub action, the default will be to run all extractors. However for large projects you might
instead want to choose a random subset:

$ cci ui update random:4

Once you have your interface, it’s recommended to update your GITHUB_TOKEN to a personal access token
CCI_GITHUB_TOKEN that will work for all extractors. You are of course free to customize the interface to your
pleasing. For example, you will likely want to change the site baseurl (the name of your repository where you will
serve it), site metadata, and the sidebar highlight color:

name: "Contributor CI Software Portal"
author: "Contributor CI <vsoch@users.noreply.github.com>"
title: Contributor CI Software Portal
description: "Contributor CI Software Portal"

Change this to your baseurl
baseurl: "/contributor-ci"
url: ""

Change this to the color you want the sidebar to highlight to
it defaults to a bright green to match contributor-ci
sidebar_highlight_color: "#00d100"

For content, the main page is located in pages/index.md, and you can delete any graph that you don’t want to
show up by deleting the corresponding file from _graphs. If there is a graph that does not exist that you’d like, or
another site feature (e.g., posts or other content type) please open an issue. Finally, you’ll want to push your interface
to GitHub and ensure that GitHub pages is turned on for the root or subfolder where you have your site.

8 Chapter 2. Resources

https://github.com/vsoch/contributor-ci

Contributor CI Documentation, Release 0.0.14

Visualizations

The interface (by default) will generate the following files, each linked to a specific set of data and javascript files. If
you want to remove any particular visualization from your interface, you can simply delete the markdown file. All
javascript files are located in assets/js/extractors

Table 2: Title
Mark-
down

Description Data Javascript

activ-
ity_commits.md

A graph that shows activity across all repos (de-
fault branches) for a year (activity commits ex-
ample).

activity_commits.
js

cci-activity_commits.
json and cci-repos.json

depen-
den-
cies.md

A hierarchical DAG that shows depdencies (de-
pendencies example).

dependencies.
js

cci-repo_dependencies.
json and
cci-dependencies.json

lan-
guages.md

A donut circle graph that shows a breakdown
of repository languages (languages example).

languages.
js

cci-languages.json

li-
censes.md

A donut circle graph that shows a breakdown
of repository licenses (licenses example).

licenses.
js

cci-repos.json

mem-
ber_repos.md

Counts of organization members and reposito-
ries (member repos example).

member_repos.
js

cci-internal-users.json
and cci-member_repos.
json

pack_users.mdA zoomable pack hierarchy that shows organi-
zations and contributors (pack users example).

pack_users.
js

cci-internal-users.json
and cci-external-users.
json

re-
pos_issues.md

Scatterplot showing repository closed. vs open
issues (issues example).

repos_issues.
js

cci-repos.json

repos.md Scatterplot of repository creation history by
year (creation history example).

creation_history.
js

cci-creation-history.
json

re-
pos_pulls.md

Scatterplot showing repository open. vs
merged pull requests (pulls example).

repos_pulls.
js

cci-repos.json

re-
pos_size.md

Bubble chart of repositories by popularity size
(number of stars) (size example).

repos_size.
js

cci-repos.json

star_history.mdNumber of stars over time (stars example). star_history.
js

cci-stars.json

topics.md Tag map of repository topics (topics example). topics.
js

cci-topics.json

Config

Contributor CI provides an easy way to interact with your configuration file, the file contributor-ci.yaml.
First, to edit the file, you can do:

$ cci config edit

By default, the editor chosen is vim. If you add an editor field to that same file, you can choose an editor of your
choice. You can also quickly sort your file in the case that you made a bunch of additions and want to ensure they are
sorted. Note that sorting happens automatically when you do an add or remove operation.

$ cci config sort

2.1. Getting Started 9

https://vsoch.github.io/contributor-ci-llnl/graphs/activity_commits/#/graphs/
https://vsoch.github.io/contributor-ci-llnl/graphs/activity_commits/#/graphs/
https://vsoch.github.io/contributor-ci-llnl/graphs/dependencies/#/graphs/
https://vsoch.github.io/contributor-ci-llnl/graphs/dependencies/#/graphs/
https://vsoch.github.io/contributor-ci-llnl/graphs/languages/#/graphs/
https://vsoch.github.io/contributor-ci-llnl/graphs/licenses/#/graphs/
https://vsoch.github.io/contributor-ci-llnl/graphs/member_repos/#/graphs/
https://vsoch.github.io/contributor-ci-llnl/graphs/pack_users/#/graphs/
https://vsoch.github.io/contributor-ci-llnl/graphs/repos_issues/#/graphs/
https://vsoch.github.io/contributor-ci-llnl/graphs/repos/#/graphs/
https://vsoch.github.io/contributor-ci-llnl/graphs/repos_pulls/#/graphs/
https://vsoch.github.io/contributor-ci-llnl/graphs/repos_size/#/graphs/
https://vsoch.github.io/contributor-ci-llnl/graphs/star_history/#/graphs/
https://vsoch.github.io/contributor-ci-llnl/graphs/topics/#/graphs/

Contributor CI Documentation, Release 0.0.14

Next, you might want to add a repository or organization to a list. You can use add and remove to do this. You should
provide the key first (e.g. member_orgs) followed by one more entries to add or remove.

$ cci config add member_orgs vsoch
$ cci config remove member_orgs vsoch

List

You likely want to start with an extraction. An extraction means that you are extracting metadata for the current data,
and for your current set of repos. But first you need to know what your options are! For this purpose you can use
list:

$ cci list
creation_history: extract creation history for repositories.

topics: extract repository topics.
repo_dependencies: extract repository dependencies.

languages: extract languages for a repository.
activity_commits: extract internal repository commit activity.

releases: extract repository releases.
stars: extract repository stars.

member_repos: extract repositories that belong to members not within org.
activity_lines: extract internal repository activity via lines of code.

dependencies: extract dependencies.
repo_metadata: gather repository metadata from several extractors.

repos: extract repository metrics.
users: extract user metrics for a repository.

repo_users: extract repositories worked on for external and internal users.

Extract

You next likely want to run an extractor. The default output directory used will be a directory named .cci for
“contributor CI” in the present working directory.

$ cci extract repos
Retrieving organization info for cdat
Checking GitHub API token... Token validated.
Auto-retry limit for requests set to 10.
Reading '/home/vanessa/Desktop/Code/contributor-ci/contributor_ci/main/extractors/
→˓collection/repos/org-repos-info.gql' ... File read!
Page 1
Sending GraphQL query...
Checking response...
HTTP STATUS 200 OK

When it finished, you can inspect the output in the present working directory “.cci” folder (unless you changed the
path in the config or on the command line). It is a tree organized by year, month, and day:

$ tree .cci/
.cci/data/

2021
6

13
cci-repos.json

10 Chapter 2. Resources

Contributor CI Documentation, Release 0.0.14

You’ll notice that the extracted data is saved in a “data” subfolder. This is because there are other output types that can
be saved here. You can also ask CCI to run more than one extractor at once:

$ cci --out-dir _data extract repos repo_metadata topics

Finally, if you want to change the output organization (which defaults to year/month/day under the data folder)
you can add --save-format:

$ cci --out-dir _data extract --save-format year/month repos repo_metadata topics

Note that since CCI uses its directories as a cache, changing the default save format will change this behavior to
generate the data no matter what, as we cannot be confident when the data was actually generated. If you find that you
don’t want this behavior, it’s recommended to run with the default save format and then clean up or organize the data
directory as you see fit.

Extractors

The following extractors are available.

Table 3: Contributor CI Extractors
Name Description Depends On
repos Extract repository metadata none
users Extract internal and external contributors lists repos
repo_dependencies Extract repository dependencies repos
dependencies Extract dependency metadata repo_dependencies
releases Extract releases for repositories repos
languages Extract languages for repositories repos
activitycommits Extract weekly number of repository commits to reflect activity repos
repo_users Extract users and repositories contributed to (internal and external) users
creation_history Extract creation history (first commit) of repositories repos
stars Extract repository stars repos
member_repos Extract repositories of members not associated with the organization users
topics Extract repository topics repos
repo_metadata Combine repository metadata across repps and topics extractors repos, topics

Contributor Friendliness Assessment

The Contributor Friendliness Assessment (CFA) is an effort to identify aspects of a repository that can be improved
to make the repository more contributor friendly. The assessment derives a list of criteria to assess how easy it is
to contribute to a project. This means arriving at a project repository and having an easy time going from knowing
nothing to opening a pull request, and also how well the project attracts new contributors. Generally, we assess the
repository for:

• CFA-branding: Does the project have branding?

• CFA-popularity: How popular is the project?

• CFA-description: Does the project have a clear description (What is it for)?

• CFA-need: Does the project have a compelling set of use cases, or statement of need (Should I use it)? This
is a fork in the visitor’s decision tree, because if the answer is yes they will continue exploring, otherwise they
will not.

• CFA-license: The GitHub repository has an OSI-approved open-source license.

2.1. Getting Started 11

Contributor CI Documentation, Release 0.0.14

• CFA-build: Methods to build or install the software or service are clearly stated.

• CFA-examples: Does the README.md have a quick example of usage?

• CFA-documentation: Does the project have documentation?

• CFA-support: Does the project make it easy to ask for help?

• CFA-developer: Process and metadata is provided for the developer to understand and make changes.

• CFA-quality: The code quality of the project.

• CFA-tests: The project has testing.

• CFA-coverage: The project reports code coverage.

• CFA-format: The project adheres to a language specific format.

• CFA-outreach: Is the project active at conferences or otherwise externally presented?

Each of the items above has a more detailed description, rationale, and list of criteria – some of which are automated.
Currently, the assessment is under development so running the cfa tool for a repository:

Generate a contributor friendliness assessment template and print to terminal
$ cci cfa --terminal https://github.com/vsoch/salad

Save to local .cci directory
$ cci cfa https://github.com/vsoch/salad

Pipe into file
$ cci cfa --terminal https://github.com/LLNL/b-mpi3 > _cfa/cfa-LLNL-b-mpi3.md

For the latter, your cfa template (with some fields populated) will be saved to your .cci output directory, as specified
in your config or on the command line:

$ tree .cci/cfa/
cfa-vsoch-salad.md

Will simply output the template to be filled in. This will be updated with automation and allowing for save in the
.cci output folder, allowing for creating new assessments, and updating previously created assessments. We will
also provide a GitHub action for generating assessment files and opening a pull request when new repositories are
found that have not been assessed.

CFA Background

The author of CCI noticed that there are many good software projects, but they don’t do a good job of explaining
use cases. She also noticed that small details like branding, documentation, and ease of use were hugely important
variables for making it easy to contribute. You can imagine a sequence of events (a decision tree) that models a user
interaction:

1. Arrive at the repository.

2. Assess project for branding and popularity.

3. What does it do?

4. Does it help with a problem that I have yes –> continue, no–> leave?

5. Does it have a license that I like?

6. Install / build the software to try out

7. Look for a getting started guide or examples

12 Chapter 2. Resources

Contributor CI Documentation, Release 0.0.14

8. Make changes to the repository, sometimes look for contributing guide.

9. Run local tests, formatting, etc.

10. Open a pull request

GitHub Action

Contributor CI comes with a GitHub action that will be more developed as the library is developed. Currently, you
can use it to run one or more extractors for a contributor-ci.yaml in your repository. For example, let’s say
we want to run all extractors:

name: Contributor CI Extract
on:

schedule

Every Sunday
- cron: 0 0 * * 0

jobs:
run:
runs-on: ubuntu-latest
steps:
- name: Checkout Actions Repository

uses: actions/checkout@v2
- name: Extract

uses: vsoch/contributor-ci@main
env:

CCI_GITHUB_TOKEN: ${{ secrets.CCI_GITHUB_TOKEN }}
with:
extract: repos
results_dir: .cci
config_file: contributor-ci.yaml

- name: Check that results exist
run: tree .cci

- name: Upload results
if: success()
uses: actions/upload-artifact@v2-preview
with:
name: cci-results
path: .cci

Note that CCI_GITHUB_TOKEN is recommended to be a personal access token, which is needed for some of the
queries to look at organizations. If you just need repository metadata, the standard GITHUB_TOKEN provided in
actions will suffice. You can either save as an artifact as shown above, or just push directly to a branch:

- name: Push Results
run:
git config --global user.name "github-actions"
git config --global user.email "github-actions@users.noreply.github.com"
git add _cci

set +e
git status | grep modified
if [$? -eq 0]; then

(continues on next page)

2.1. Getting Started 13

Contributor CI Documentation, Release 0.0.14

(continued from previous page)

set -e
printf "Changes\n"
git commit -m "Automated push with new data results $(date '+%Y-%m-%d')" ||

→˓exit 0
git push origin main

else
set -e
printf "No changes\n"

fi

You can also use a pull request action to open a pull request instead. The action can also support generating Contributor
Friendliness Assessment (markdown) files. Since these might warrant being populated into an interface, if you select
a results_dir here, the markdown files will explicitly be written there. If not, then they will be written to the
default in .cci/cfa.

name: Contributor CI Update Contributor Friendliness Assessment
on:

schedule

Every Sunday
- cron: 0 0 * * 0

jobs:
run:
runs-on: ubuntu-latest
steps:
- name: Checkout Actions Repository

uses: actions/checkout@v2
- name: Update CFAs

uses: vsoch/contributor-ci@main
env:

CCI_GITHUB_TOKEN: ${{ secrets.CCI_GITHUB_TOKEN }}
with:
cfa: true
results_dir: ./cfa
config_file: contributor-ci.yaml

- name: Check that results exist
run: tree ./cfa

Finally, you can ask to run more than one extractor, akin to how you can on the command line!

jobs:
extraction:
runs-on: ubuntu-latest
steps:
- name: Checkout Repository

uses: actions/checkout@v2
- name: Update Data

uses: vsoch/contributor-ci@main
env:

GITHUB_TOKEN: ${{ secrets.CCI_GITHUB_TOKEN }}
with:
results_dir: _data/
extract: repo_metadata topics languages releases stars activity_commits

→˓activity_lines

14 Chapter 2. Resources

https://github.com/vsoch/pull-request-action

Contributor CI Documentation, Release 0.0.14

2.1.3 Developer Guide

This developer guide includes instructions for how to write an extractor. If you haven’t read Installation you should
do that first.

Writing an Extractor

An extractor is a directory in the folder contributor_ci/main/extractors. The directory should correspond
to the name of the extractor (e.g., users or repos) and within should minimally be an extract.py file.

Extractor Base Classes

You can use an extractor base class to get access to all the functions to save, load, and otherwise run an extraction.
Specifically, if you are using a GitHub extractor, you can import the GitHubExtractorBase:

from contributor_ci.main.extractor import GitHubExtractorBase

If you don’t require GitHub and are extracting metadata in some other way, the ExtractorBase should be sufficient.

from contributor_ci.main.extractor import ExtractorBase

GitHub Extractor Base

The GitHubExtractorBase required a GITHUB_TOKEN to be exported in the environment, and comes with a
self.manager that is a query manager from this scraper tool. This tool uses graphQL queries that should be located
in the same directory as the extractor. For example, the users extractor has several query files (extension *.gql) as you
can see here:

$ tree contributor_ci/main/extractors/users/
contributor_ci/main/extractors/users/

extract.py
__init__.py
org-members.gql
repo-users.gql

There are several helper functions to support loading files, and reading any previously extracted dependency files. As
long as you add depends_on to your extractor, there is an ExtractorResolver class that will make sure your
dependency data is produced before the extractor is run. You can do any of the following:

Load the dependency file named cci-repos.json
repos.data will have the loaded data
repos = self.load_dependency_file("repos")

Load the query filename org-repos-info.gql in the extractor directory
org_query = self.get_local_query("org-repos-info.gql")

For running queries, it’s recommended that you look at already existing GitHub extractors for examples.

2.1. Getting Started 15

https://github.com/LLNL/scraper

Contributor CI Documentation, Release 0.0.14

Extractor Metadata

Each extractor is required to have a set of properties that help to identify it. Specifically:

Table 4: Title
Name Description Re-

quired
name The extractor name, which should match the folder it lives in. true
de-
scrip-
tion

A description of the extractor. true

file-
names

The filename identifiers that the extractor is expected to save. E.g., if the “repos” extractor saves
a file called “cci-repos.json”, you would provide a list with “repos.”

true

de-
pends_on

A list of other extractor names that this extractor depends on false

You will also want to name your extractor the same as the directory and name, but uppercase. This is how the class is
discovered. As an example, here is the “users” extractor.

class Users(GitHubExtractorBase):

name = "users"
description = "extract user metrics for a repository."
depends_on = ["repos"]
filenames = ["internal-users", "external-users"]

This extractor requires that the “repos” extractor is run first (the depends_on field) because we need a list of organiza-
tion repositories to find members in. This means that if someone runs:

cci extract users

The “repos” extractor will be run first as the dependency. You’ll also notice that filenames include “internal-users” and
“external-users,” and these will generate output files in the nested output directory named accordingly. After running
this extractor, you’ll see:

$ tree .cci/
.cci/

2021
6

3
cci-repos.json

5
cci-external-users.json
cci-internal-users.json
cci-repos.json

4 directories, 4 files

16 Chapter 2. Resources

Contributor CI Documentation, Release 0.0.14

Extractor Functions

Your extractor is required to have one main function called extract to do whatever extraction is needed and save
results to self._data. Importantly, the keys to self._data should correspond with the file key you intend to
save. For the repos extractor, this means we save data to self._data["repos"]` or just self._data[self.
name] and for the users extractor we expect to find data keys “internal-users” and “external-users.” That’s it! As long
as you have a function to extract, provide the necessary metadata, and populate the data into self._data correctly,
you should be good to go.

2.2 Contributor CI

These sections detail the internal functions for Contributor CI.

2.3 Internal API

These pages document the entire internal API of Contributor CI.

2.3.1 cci package

Submodules

contributor_ci.client module

contributor_ci.client.get_parser()

contributor_ci.client.run()

contributor_ci.logger module

class contributor_ci.logger.ColorizingStreamHandler(nocolor=False,
stream=<_io.TextIOWrapper
name='<stderr>' mode='w'
encoding='UTF-8'>,
use_threads=False)

Bases: logging.StreamHandler

BLACK = 0

BLUE = 4

BOLD_SEQ = '\x1b[1m'

COLOR_SEQ = '\x1b[%dm'

CYAN = 6

GREEN = 2

MAGENTA = 5

RED = 1

RESET_SEQ = '\x1b[0m'

2.2. Contributor CI 17

Contributor CI Documentation, Release 0.0.14

WHITE = 7

YELLOW = 3

can_color_tty()

colors = {'CRITICAL': 1, 'DEBUG': 4, 'ERROR': 1, 'INFO': 2, 'WARNING': 3}

decorate(record)

emit(record)
Emit a record.

If a formatter is specified, it is used to format the record. The record is then written to the stream with a
trailing newline. If exception information is present, it is formatted using traceback.print_exception and
appended to the stream. If the stream has an ‘encoding’ attribute, it is used to determine how to do the
output to the stream.

property is_tty

class contributor_ci.logger.Logger
Bases: object

cleanup()

debug(msg)

error(msg)

exit(msg, return_code=1)

handler(msg)

info(msg)

location(msg)

progress(done=None, total=None)

set_level(level)

set_stream_handler(stream_handler)

shellcmd(msg)

text_handler(msg)
The default snakemake log handler. Prints the output to the console. :param msg: the log message dictio-
nary :type msg: dict

warning(msg)

contributor_ci.logger.setup_logger(quiet=False, printshellcmds=False, nocolor=False,
stdout=False, debug=False, use_threads=False,
wms_monitor=None)

18 Chapter 2. Resources

Contributor CI Documentation, Release 0.0.14

contributor_ci.main module

contributor_ci.main.extractor module

contributor_ci.main.schemas module

contributor_ci.main.settings module

contributor_ci.main.extractors module

2.3. Internal API 19

Contributor CI Documentation, Release 0.0.14

20 Chapter 2. Resources

PYTHON MODULE INDEX

c
contributor_ci, 17
contributor_ci.client, 17
contributor_ci.logger, 17
contributor_ci.main.extractors, 19

21

Contributor CI Documentation, Release 0.0.14

22 Python Module Index

INDEX

B
BLACK (contributor_ci.logger.ColorizingStreamHandler

attribute), 17
BLUE (contributor_ci.logger.ColorizingStreamHandler

attribute), 17
BOLD_SEQ (contributor_ci.logger.ColorizingStreamHandler

attribute), 17

C
can_color_tty() (contribu-

tor_ci.logger.ColorizingStreamHandler
method), 18

cleanup() (contributor_ci.logger.Logger method), 18
COLOR_SEQ (contribu-

tor_ci.logger.ColorizingStreamHandler at-
tribute), 17

ColorizingStreamHandler (class in contribu-
tor_ci.logger), 17

colors (contributor_ci.logger.ColorizingStreamHandler
attribute), 18

contributor_ci
module, 17

contributor_ci.client
module, 17

contributor_ci.logger
module, 17

contributor_ci.main.extractors
module, 19

CYAN (contributor_ci.logger.ColorizingStreamHandler
attribute), 17

D
debug() (contributor_ci.logger.Logger method), 18
decorate() (contribu-

tor_ci.logger.ColorizingStreamHandler
method), 18

E
emit() (contributor_ci.logger.ColorizingStreamHandler

method), 18
error() (contributor_ci.logger.Logger method), 18
exit() (contributor_ci.logger.Logger method), 18

G
get_parser() (in module contributor_ci.client), 17
GREEN (contributor_ci.logger.ColorizingStreamHandler

attribute), 17

H
handler() (contributor_ci.logger.Logger method), 18

I
info() (contributor_ci.logger.Logger method), 18
is_tty() (contributor_ci.logger.ColorizingStreamHandler

property), 18

L
location() (contributor_ci.logger.Logger method),

18
Logger (class in contributor_ci.logger), 18

M
MAGENTA (contributor_ci.logger.ColorizingStreamHandler

attribute), 17
module

contributor_ci, 17
contributor_ci.client, 17
contributor_ci.logger, 17
contributor_ci.main.extractors, 19

P
progress() (contributor_ci.logger.Logger method),

18

R
RED (contributor_ci.logger.ColorizingStreamHandler at-

tribute), 17
RESET_SEQ (contribu-

tor_ci.logger.ColorizingStreamHandler at-
tribute), 17

run() (in module contributor_ci.client), 17

S
set_level() (contributor_ci.logger.Logger method),

18

23

Contributor CI Documentation, Release 0.0.14

set_stream_handler() (contribu-
tor_ci.logger.Logger method), 18

setup_logger() (in module contributor_ci.logger),
18

shellcmd() (contributor_ci.logger.Logger method),
18

T
text_handler() (contributor_ci.logger.Logger

method), 18

W
warning() (contributor_ci.logger.Logger method), 18
WHITE (contributor_ci.logger.ColorizingStreamHandler

attribute), 17

Y
YELLOW (contributor_ci.logger.ColorizingStreamHandler

attribute), 18

24 Index

	Support
	Resources
	Getting Started
	Contributor CI
	Internal API

	Python Module Index
	Index

